
1 23

Natural Hazards
Journal of the International Society
for the Prevention and Mitigation of
Natural Hazards
 
ISSN 0921-030X
Volume 92
Number 2
 
Nat Hazards (2018) 92:907-925
DOI 10.1007/s11069-018-3231-1

Coupling sentiment and human mobility in
natural disasters: a Twitter-based study of
the 2014 South Napa Earthquake

Yan Wang & John E. Taylor



1 23

Your article is protected by copyright and

all rights are held exclusively by Springer

Science+Business Media B.V., part of Springer

Nature. This e-offprint is for personal use only

and shall not be self-archived in electronic

repositories. If you wish to self-archive your

article, please use the accepted manuscript

version for posting on your own website. You

may further deposit the accepted manuscript

version in any repository, provided it is only

made publicly available 12 months after

official publication or later and provided

acknowledgement is given to the original

source of publication and a link is inserted

to the published article on Springer's

website. The link must be accompanied by

the following text: "The final publication is

available at link.springer.com”.



ORI GIN AL PA PER

Coupling sentiment and human mobility in natural
disasters: a Twitter-based study of the 2014 South Napa
Earthquake

Yan Wang1 • John E. Taylor2

Received: 6 October 2017 / Accepted: 19 February 2018 / Published online: 15 March 2018
� Springer Science+Business Media B.V., part of Springer Nature 2018

Abstract Understanding population dynamics during natural disasters is important to

build urban resilience in preparation for extreme events. Social media has emerged as an

important source for disaster managers to identify dynamic polarity of sentiments over the

course of disasters, to understand human mobility patterns, and to enhance decision

making and disaster recovery efforts. Although there is a growing body of literature on

sentiment and human mobility in disaster contexts, the spatiotemporal characteristics of

sentiment and the relationship between sentiment and mobility over time have not been

investigated in detail. This study therefore addresses this research gap and proposes a new

lens to evaluate population dynamics during disasters by coupling sentiment and mobility.

We collected 3.74 million geotagged tweets over 8 weeks to examine individuals’ senti-

ment and mobility before, during and after the M6.0 South Napa, California Earthquake in

2014. Our research results reveal that the average sentiment level decreases with the

increasing intensity of the earthquake. We found that similar levels of sentiment tended to

cluster in geographical space, and this spatial autocorrelation was significant over areas of

different earthquake intensities. Moreover, we investigated the relationship between

temporal dynamics of sentiment and mobility. We examined the trend and seasonality of

the time series and found cointegration between the series. We included effects of the

earthquake and built a segmented regression model to describe the time series finding that

day-to-day changes in sentiment can either lead or lag daily changed mobility patterns.

This study contributes a new lens to assess the dynamic process of disaster resilience

unfolding over large spatial scales.
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1 Introduction

Natural disasters adversely affect human beings and the built environment. According to

the latest report from Munich RE (2017), over the past 7 years from 2010 to 2016, natural

loss events (with at least one fatality and/or produced normalized losses larger than 100

thousand, 300 thousand, 1 million, or 3 million U.S. dollars depending on the assigned

World Bank income group of the affected country) caused yearly average insurance losses

of 55 billion U.S. dollars and overall losses of 174 billion U.S. dollars. During the same

time period, there were in total 188 catastrophic natural events, and each of them caused

more than 1000 fatalities and/or more than 100 million U.S. dollars in normalized losses

(Munich RE 2017). Urban areas, due to their large and concentrated population and

complex networked infrastructure systems, are highly susceptible to natural hazards, e.g.,

flooding, drought, storms, earthquakes, tsunamis and landslides (Godschalk 2003). It is

crucial to improve urban resilience to natural hazards. Among the tasks of disaster risk

reduction, benchmarks for strengthening urban resilience and adaptation is urgent because

it is difficult to manage something that is not measured (UNISDR 2017).

Big data offers the potential to revolutionize our understanding of managing disaster

risks in terms of vulnerability assessment, early warning, monitoring and evaluation (Ford

et al. 2016). Taking advantage of the increasing use of social media platforms, e.g.,

Facebook and Twitter (Pew Research Center 2017), researchers have extended our

understanding of disaster dynamics from diverse perspectives (Guan and Chen 2014; Tang

et al. 2015; Wang and Zhuang 2017; Wang et al. 2016). These platforms can document

geographical locations and collective reactions to extreme events in both virtual and

physical worlds at a broad scale, which facilitates the development of research and

practices in various branches of disaster management.

Twitter, among the most popular social media platforms, provides plentiful opportu-

nities for detecting, tracking, and documenting extreme events. Its open design, wide

usage, geo-enabled functionality and limited message lengths are well suited for emer-

gency environments (Kryvasheyeu et al. 2016). Research involving sentiment analysis and

human mobility has already taken advantage of the massive crowd-sourced data collected

from Twitter. These two research topic areas help disaster managers make bottom-up

decisions and play increasingly important roles in disaster relief. Specifically, sentiment

analysis of short posts from social media has been shown to be an effective method to

identify the dynamic polarity of sentiments over a disaster (Beigi et al. 2016), improve

decision making regarding resource assistance, humanitarian efforts and disaster recovery,

and obtain particular information (Nagy and Stamberger 2012). Additionally, human

mobility, defined as the quantification of an individuals’ movement trajectory, provides a

basis to understand the perturbed movement patterns during and after disasters, and to

predict displacements (Wang and Taylor 2014).

We developed the approach outlined in this study to enable a data-driven understanding

of disaster dynamics in urban areas. To examine the spatiotemporal dynamics of urban

areas during natural disasters, we: (a) examined the correlation between disaster intensity

and collective sentiment, and the spatial association of sentiment in different disaster

intensity zones; (b) investigated the temporal characteristics of sentiment and human
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mobility using an interrupted time series model; and (c) explored the relationship between

individuals’ sentiment and mobility over the course of a disaster.

The structure of the paper is arranged as follows: Sect. 2 summarizes the current studies

on human mobility and sentiment in the disaster context, and develops two sets of

hypotheses. Section 3 illustrates the specific disaster case studied, data collection, pre-

processing and specific methods for computing sentiment and mobility, and for conducting

spatial and temporal analysis. Section 4 explains the research results for each hypothesis.

Section 5 discusses our research results and limitations. Finally, Sect. 6 draws conclusions

from this study and suggests future studies for broader academic and practical work.

2 Related work

2.1 Sentiment analysis and natural disasters

Sentiment analysis of short posts from social media plays an increasingly important role in

disaster relief and urban resilience. It is an effective method to help disaster managers to

identify the dynamic polarity of sentiments over the course of a disaster (Beigi et al. 2016),

improve decision making regarding resource assistance and requests, humanitarian efforts

and disaster recovery, and obtain particular information (Nagy and Stamberger 2012). Vo

and Collier (2013) classified and tracked the emotions of affected people using tweets

during earthquakes in Japan. Eight types of emotion were selected to annotate tweets,

including unconcerned, concerned, calm, unpleasantness, sadness, anxiety, fear and relief.

The results revealed that fear and anxiety were the main emotions after an earthquake

occurred, while calm and unpleasantness were only detected during severe earthquakes.

Cody et al. (2015) explored the collective sentiment of tweets containing the word ‘‘cli-

mate’’, and found the connection between climate-change-related topics and a change of

happiness. Bai and Yu (2016) proposed an incident monitoring framework in a post-

disaster situation based on crowd negative sentiment of Chinese short blogs from Weibo.

The framework was applied in the Ya’an earthquake and discovered aftershocks and

potential public crises effectively. Although a few critical efforts have been made to

classify sentiment during and after disasters, few studies have worked on examining both

spatial and temporal dynamics of sentiment over the course of a disaster. A study by

Neppalli et al. (2017) found unique spatial tweeting patterns of positive and negative

sentiment following Hurricane Sandy: both positive and negative sentiment generally

showed increasing clustering tendency to the point of Hurricane Sandy’s maximum impact

and then dispersed on the following days, while negative sentiment consistently clustered

in closer proximity to Hurricane Sandy. It remains unclear what role disaster intensity

plays in influencing sentiment, and what spatial patterns of sentiment may be during other

types of disasters.

2.2 Human mobility during natural disasters

Human mobility, as a critical quantification basis of human dynamics, has triggered

interest from diverse research areas, such as urban planning, traffic congestion, disease

diffusion, and natural disasters. Different sources of crowd-sourced geo-referenced data

have been utilized including Twitter, mobile phone records, billing records, etc. The

analysis of this data has ushered a new era to quantitatively understand urban population
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dynamics. Recently, human mobility patterns during natural disasters have received con-

siderable research attention. Scholars in the disaster research area have identified scaling

laws and evaluated the predictability of human mobility during and after extreme events

using mobility patterns from non-perturbed states. Lu et al. (2012) used approximately

1 year of mobile phone data of 1.9 million users and found that population movements

following the Haiti earthquake had a high level of predictability, and destinations were

correlated with normal-day mobility patterns and social support structure. A study by

Wang and Taylor (2014) showed that human mobility was significantly perturbed during

Hurricane Sandy but also exhibited high levels of resilience. A more recent study on

multiple types of natural disasters revealed a more universal pattern of human mobility, as

well as the limitations of urban human mobility resilience under the influence of multiple

types of natural disasters (Wang and Taylor 2016). A recent study by Wang et al. (2017)

also revealed how human mobility is perturbed by severe winter storms. These studies

quantitatively improve our understanding of human mobility dynamics during events;

however, the change of mobility pattern associated with sentiment levels over time before,

during and after a natural disaster has yet to be investigated.

2.3 Hypothesis development

Although few disaster-oriented studies examine the spatial and temporal characteristics of

sentiment and its relationship with mobility over time, these topics have drawn interest of

researchers from other fields (e.g., urban studies and computer science). For instance,

Bertrand et al. (2013) visualized sentiment in New York City based on 603,954 geotagged

Tweets over 2 weeks. They identified that the level of sentiment is connected with loca-

tion, e.g., it progressively improved with proximity to Times Square. They also found

periodic patterns of sentiment at both daily and weekly scales: tweets on weekends tend to

be more positive than on weekdays; midnight tweets are the most positive while 9:00 am

and noon have the lowest-level-of-sentiment tweets. Lin (2014) examined sentiment

segregation in urban communities with 3-months of geotagged tweets in Pittsburg. He

explored the sentiment stability of neighborhoods and correlations between their sentiment

orientations and the neighborhoods’ demographic attributes. The results indicated a sig-

nificant sentiment segregation effect. Mitchell et al. (2013) investigated the relationship

between sentiment and geographic, emotional, demographic and health characteristics with

80 million geotagged tweets in 2011. Frank et al. (2013) characterized sentiment as a

function of human mobility using a collection of 37 million geo-located tweets from

180,000 individuals. Research results of the two studies revealed that expressed happiness

increased logarithmically with distance from an individuals’ center of mass; it also

increased logarithmically with the radius of gyration when binning individuals into ten

equally sized groups by the radius of gyration.

These studies and our motivation to examine urban population dynamics during dis-

asters inspired us to extend the spatiotemporal analysis of sentiment and mobility over time

to the disaster context. We therefore propose two sets of hypotheses below:

Category 1 Spatial characteristics of sentiment

Hypothesis 1a Sentiment level is correlated with earthquake intensity: the higher

intensity of disaster polygons that tweets/individuals are in, the lower sentiment levels

tweets/individuals have.
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Hypothesis 1b Sentiment level is clustered in space: tweets/individuals of similar sen-

timent levels tend to cluster together.

Category 2 Disasters can disrupt the temporal relationship between sentiment and

mobility

Hypothesis 2a There is a significant interuption in time series of sentiment and mobility.

Hypothesis 2b Time series of sentiment and mobility are cointegrated.

Hypothesis 2c Change in sentiment (Dsentiment) and change in mobility (Dmobility) are

cross-correlated over time, and Dsentiment is a predictor of Dmobility.

3 Data and methods

3.1 South Napa, California Earthquake

We elected to design our study of sentiment and mobility in natural disasters to focus on a

severe earthquake. Geophysical disasters, such as earthquakes, are among the most severe

natural disasters in terms of fatalities and damage. The 6.0 magnitude (M6.0) South Napa,

California Earthquake was the strongest earthquake in 25 years in the Northern California

Bay Area of the United States. The earthquake occurred at 10:20:44 UTC (03:20:44 PDT)

on August 24, 2014, north of San Francisco. It reached the Modified Mercalli Intensity

(MMI) Scale of VIII (severe) and on the moment magnitude scale a 6.0. MMI is a

qualitative measure of the strength of ground shaking at a particular site and the USA

employs the MMI scale, which ranges from I (not felt) to X (extreme) (USGS 2017).

According to the Earthquake Engineering Research Institute (EERI 2014), the earthquake

caused approximately 200 injuries and one fatality, and the total amount of federal aid was

30.8 million USD. Perceived shaking, potential damage and selected cities exposure under

different estimated MMI can be found in Table 1 (USGS 2017).

3.2 Data description

The raw data for this study are comprised of geotagged tweets collected from a Twitter

Streaming API (Wang and Taylor 2015). We use geotagging as the only filter to collect

real-time tweets. As 1.24% of tweets are geotagged (Pavalanathan and Eisenstein 2015)

and the streaming API can collect 1% of tweets, our database is representative in terms of

geotagged tweets. Additionally, the Twitter geotags are based on GPS Standard Positioning

Service, which offers a worst-case pseudo-range accuracy of 7.8 m with 95% confidence

(Swier et al. 2015).

We used a spatial bounding box of intensity 2.5 contour to filter geotagged tweets

(latitude from 37.382170 to 39.048830, longitude from - 123.561700 to - 121.061700),

because an intensity 2.5 contour represents the lowest level of perceived shaking for this

disaster case. The study period was set from August 3 to September 27, 2014. Specifically,

we consider 3 a.m. (PDT) as the starting time of a day to aggregate 24-h tweets for further

daily-based analysis due to the time that the earthquake occurred (3:20 a.m. PDT). In total,

we collected 3,737,325 geotagged tweets. As we focused exclusively on tweets in English,

the data volume reduced to 3,310,323 tweets. The daily average percentage of English
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tweets is 88.58% during the study period, which indicates that these tweets are generally

representative for the population in the studied area.

Additionally, for detailed analysis, five different intensity polygons were generated

based on the contours of macroseismic intensity including 7.0, 6.0, 5.0, 4.0, and 3.0

intensity polygons. For instance, the 7.0 polygon refers to the polygon surrounded by

the 6.5 intensity line, and the 6.0 polygon refers to the polygon surrounded by 5.5–6.5

intensity polylines. The GIS files in this study were obtained from USGS (2014). Allo-

cations of the Twitter geolocations in the different intensity polygons on August 24, 2014,

are illustrated in Fig. 1. Data volumes of English geotagged tweets in distinct intensity

polygons are: 3008 (Intensity 7.0 polygon), 2280 (Intensity 6.0 polygon), 2655 (Intensity

5.0 polygon), 34,336 (Intensity 4.0 polygon), 40,173 (Intensity 3.0 polygon), and 1282

(Intensity 2.5 polygon).

3.3 Sentiment analysis

Twitter allows its users to share short 140-character messages. The texts can include words,

URLs, mentions, emotions, abbreviations, etc. We cleaned the text by removing URL links

and user mentions (@). We did not delete negations and kept as much context as possible

for more accurate sentiment analysis. We adopted an unsupervised lexicon-based method

to measure the sentiment. The method is based on an affective word list AFINN to assign

sentiment scores to words in tweets (Nielsen 2011). The latest version of the word list

includes 2477 words. The valence of a word ranges from - 5 (very negative) to ? 5 (very

positive) as an integer. The sum of valence without normalization of words represents the

combined sentiment strength for a tweet. A Python Package ‘‘afinn’’ was used to compute

the sentiment scores.

Fig. 1 Filtered Twitter geolocations in different intensity polygons on August 24, 2014

Nat Hazards (2018) 92:907–925 913
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Comparing with methods that classify tweets to nominal categories (e.g., ‘‘negative,

neutral, and positive’’), numerical scores for sentiment contain more information about

levels of sentiment and are more suitable for statistical analysis in this study. Additionally,

AFINN is a Twitter-based sentiment lexicon including Internet slangs and obscene words.

It has been tested in different types of tweets corpora and performs at a consistently

satisfactory level of accuracy for both two classes (positive and negative) and three classes

(positive, negative and neutral), compared with other unsupervised methods for sentence-

level sentiment analysis (Ribeiro et al. 2015). Moreover, the AFINN word list has shown

its advantages in analyzing tweets for disaster and crisis sentiment detection (e.g., Nagy

and Stamberger 2012; Walther and Kaisser 2013). We therefore selected the AFINN

lexicon to evaluate the sentiment polarity of our collected tweets.

3.4 Radii of gyration

Radii of gyration ðrgÞ, a measurement of object movement from physics, has been widely

used to quantify the size of trajectory of individuals since the study of Gonzalez et al.

(2008). To achieve a more nuanced understanding of the perturbation of human mobility

patterns, we computed the daily rg of each distinct Twitter user over 8 weeks to identify

the change of daily radii of gyration over time. The authors adopted the formula in Eq. 1

(Wang and Taylor 2016) to calculate the rg of each distinct individual in the data set.

rg ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n

X

n

k¼1

2r � sin�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sin2 /k � /c

2

� �

þ cos/k/c sin2 uk � uc

2

� �

s

 !" #

v

u

u

t ð1Þ

where n is the total frequency of visited locations of a Twitter user, k is each visited

location by the user during a 24 h period, c is the center location of the user’s trajectories,

/ is the latitude, and u is the longitude.

3.5 Spatial autocorrelation

We employed Moran’s I (Moran 1950) and Geary’s C (Geary 1954) to measure the spatial

autocorrelation of sentiment in earthquake-affected areas. As Moran’s I is a more global

measurement and sensitive to extreme values, and Geary’s C is more sensitive to differ-

ences in small neighborhoods, we adopted both statistics.

Moran’s I (Moran 1950) can measure how sentiment level of a location is similar to

others surrounding it. Its value ranges from - 1 (perfect clustering of dissimilar values) to

1 (perfect clustering of similar values), and 0 indicates no autocorrelation (perfect

randomness).

I ¼ n
Pn

i¼1

Pn
j¼1 wij

� �

P

i

P

j wijðxi � �xÞðxj � �xÞ
P

i ðxi � �xÞ2
ð2Þ

where �x is the mean of the x variable, wij are the elements of the weight matrix.

Geary’s C statistic (Geary 1954) is based on the deviations in responses of each

observation with one another. It ranges from 0 (perfect positive autocorrelation) to a

positive value (high negative autocorrelation). If the value is less than 1, it indicates

positive spatial autocorrelation.
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C ¼ n� 1

2
Pn

i¼1

Pn
j¼1 wij

� �

P

i

P

j wijðxi � xjÞ2

P

i ðxi � �xÞ2
ð3Þ

3.6 Time series analysis

3.6.1 Interrupted time series

We employed a segmented regression model (Wagner et al. 2002) to describe the inter-

rupted time series of sentiment and mobility before, during and after the earthquake. This

regression model is powerful in assessing the intervention effects in interrupted time series

over time. We regarded the earthquake as a change point to divide the time series into two

portions. Two parameters were used to define each segment of the time series: level and

trend. The level refers to the value of the series at the start of a certain interval, while the

trend is the rate of change during a portion.

The segmented regression model for sentiment (Eq. 4) and mobility (Eq. 5) are listed

below:

St ¼ b0 þ b1 � timet þ b2 � disastert þ b3 � time after disastert þ et ð4Þ

Mt ¼ b0 þ b1 � timet þ b2 � disastert þ b3 � time after disastert þ et ð5Þ

St and Mt: daily average value of individual’s adjusted sentiment and radius of gyration

respectively (removed seasonality); timet: a continuous variable indicating time in days at

time t from the start of the observation period; disastert: an indicator for time t occurring

pre-earthquake ðdisastert ¼ 0Þ or post-earthquake ðdisastert ¼ 1Þ, which was implemented

at day 22 in the series; time after disastert: a continuous variable counting the number of

days after the disaster at time t; b0 estimates the baseline level of the outcome, mean value

of adjusted sentiment per individual per day, at time zero; b1 estimates the change in the

mean value of adjusted sentiment that compute with each day before the disaster occurs

(i.e., the baseline trend); b2 estimates the level change immediately after the disaster, that

is, from the end of the preceding segment; b3 estimates the change in the trend after the

earthquake, compared with the daily trend before the disaster; the sum of b1 and b3 is the

post-disaster slope.

3.6.2 Cointegration of time series

The relationship of cointegration reveals the co-movement of two time series in the long

term. It can be illustrated by the simplest possible regression equation (Granger 1981) in

our research scenario (Eq. 6):

Mt ¼ aþ bSt þ et ð6Þ

where Mt is the dependent variable, St the single exogenous regressor, and fetg a white-

noise, mean-zero sequence. The definition of cointegration can be illustrated as ‘‘two non-

stationary time series are cointegrated if some linear combination of them is a stationary

series’’ (Metcalfe and Cowpertwait 2009, pp 217).
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3.6.3 Cross-correlation of time series

We also employed cross-correlation analysis (see Eq. 7) to identify lags of the daily

changed sentiment that might be useful predictors of daily changed mobility.

Mtþh ¼ bþ a
X

k�1

j¼0

St�j þ et ð7Þ

where Mt is the time series of radius of gyration, St is the time series of sentiment. et is the

Gaussian noise, and h is the lag hyperparameter. A negative value for h is a correlation

between sentiment at a time before t and the mobility at t, which means St leads Mt; while

positive h means St lags Mt.

4 Results

4.1 Earthquake intensity and sentiment

We focused our analysis on the first 24 h after the earthquake. We specifically classified

the collected tweets into six intensity polygons and conducted both tweet-based analysis

and individual-based analysis. Firstly, we grouped the tweets into six bins of distinct

intensities. The average sentiment of tweets in each bin is taken as the sentiment strength of

the bin. The relationship between sentiment of tweets and intensity is shown in Fig. 2a.

Sentiment decreases linearly with the intensity level. We also placed individuals into six

intensity groups based on their center of mass (average location). For individuals who

tweeted more than once during the 24 h, we calculated different statistics of sentiment of

their tweets, including sum, average, median, maximum and minimum. Sentiment score of

each group is the statistic of individuals’ sentiment. The correlation between different

statistics of individual’s sentiment and earthquake intensity are plotted in Fig. 2b–f.

According to the results of the linear regressions, earthquake intensity can linearly

explain the sum sentiment of individual’s tweets better than other statistics (R2 ¼ 0:944).

The average sentiment of tweets also has a significant correlation with the intensity.

However, extreme sentiment of individual’s daily tweets (i.e., max and min) cannot be

explained by the earthquake intensity very well (p[ 0:1).

4.2 Spatial association of sentiment

We performed spatial correlation analysis of sentiment scores across six disaster zones of

distinct intensity and the whole area with Geary’s C and Moran’s I. The results of Geary’s

C and Moran’s I are statistically significant with all p values less than 0.01, and all but two

p values less than 0.001. Moran’s I at different spatial scales is positive and values of

Geary’s C are less than 1, which indicates spatial dependencies for similar levels of

sentiment in all earthquake-affected areas of different intensities. Note, however, that the

values of Moran’s I for the whole area and all the intensity zones are small, suggesting a

weak but significant tendency of similar levels of sentiment to cluster in different areas.

The autocorrelation analysis results can be found in Table 2.
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4.3 Temporal analysis of sentiment and mobility

4.3.1 Decomposition of time series

We normalized daily sentiment and radius of gyration by dividing by the number of

individuals (Eqs. 8 and 9). Only individuals with at least two distinct locations in a single

day were included into the analysis. Examining Twitter postings from at least two distinct

locations removes static tweets from bots and organizations.

Fig. 2 a Average sentiment of tweets was a function of earthquake intensity, with tweets grouped into six
different intensity polygons. b–f Average sentiment of individuals was a function of earthquake intensity,
with individuals grouped into six different intensity polygons
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Normalized sentiment ¼
P

Daily average sentiment of individuals

Number of individuals
ð8Þ

Normalized mobility ¼
P

Radius of gyration

Number of individuals
ð9Þ

The changes of sentiment and mobility over the study period are plotted in Figs. 3 and

4, respectively. We decomposed the time series based on a moving average method to

investigate the trends and seasonal effects (assumed weekly). The additive decomposition

within each plot includes the observed time series, trend, seasonal effect, and random

variables with mean zero (irregular plot). The unit of time scale is a week. According to the

trend plot in the decomposition plots, there is a decreasing trend before the earthquake

occurred, and an increasing trend post-disaster for both series.

4.3.2 Stationarity and cointegration

We adjusted the time series by removing the seasonality prior to further analysis. This is

necessary to avoid the impact of the intrinsic autocorrelation of the time series and to avoid

the false identification of a relationship between sentiment and mobility. We conducted the

Augmented Dickey–Fuller (ADF) Test (Said and Dickey 1984) with the null hypothesis

being that a unit root is present in a time series sample, and an alternative hypothesis of

stationarity. We did not find support to reject the hypothesis in both time series of senti-

ment St (p value = 0.8089, Dickey–Fuller = - 1.4189) and time series of radius of

gyration Mt (p value\ 0.1442, Dickey–Fuller = - 3.0673). This means we did not find

evidence to support the stationarity for both Mt and St. Therefore, there is no clear ten-

dency for time series of mobility and sentiment to return to or fluctuate around a constant

value or a linear trend.

We then tested if the two adjusted non-stationary time series are cointegrated with the

Phillips–Ouliaris Cointegration Test (Phillips and Ouliaris 1990). We found support to

reject the null hypothesis that the two series are not cointegrated (Phillips–Ouliaris

demeaned = -32.458, p value B 0.01). This cointegration means that there exists a linear

combination of the two variables that is stationary. In another words, sentiment and

mobility share a trend together over time: specifically, a change in one will be permanent

Table 2 Spatial autocorrelation of sentiment during 24 h after the earthquake

Moran’s I Geary’s C

Statistics p value SD Statistics p value SD

Whole area 0.0692 \ 2.2e-16*** 30.98 0.9258 \ 2.2e-16*** 15.637

7 intensity zone 0.0653 1.311e-08*** 5.565 0.9425 0.0007042*** 3.1929

6 intensity zone 0.0623 1.819e-06*** 4.6311 0.9521 0.002832** 2.7666

5 intensity zone 0.0651 9.001e-08*** 5.2189 0.9236 6.299e-05*** 3.8342

4 intensity zone 0.0668 \ 2.2e-16*** 19.19 0.9291 \ 2.2e-16*** 9.0739

3 intensity zone 0.0689 \ 2.2e-16*** 21.389 0.9239 \ 2.2e-16*** 10.812

2 intensity zone 0.0573 0.0007405*** 3.1784 0.9356 0.004594** 2.605

*p value\ 0.05, **p value\ 0.01, ***p value\ 0.001
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only if both change; an interruption to only one will be meaningless in the long run because

it will be pulled back to the long-term path determined by the other one.

4.3.3 Interrupted time series analysis

The parameter estimate from the linear segmented regression model of effects of

the earthquake on the mean sentiment of population can be found in Table 3. The fitted

model is demonstrated by Eq. 10. The results indicate that just before the study period, the

daily average sentiment in the study period was 0.413. Before the earthquake, there was a

significant day-to-day change in the value (p value for baseline trend = 6.65e-05). Just

after the earthquake, the day-to-day change in sentiment increased by 0.006 statistically

(p value for trend change = 2.60e-05), but there was no significant change in the senti-

ment level. We eliminated the non-significant term and the most parsimonious model

includes only intercept, baseline trend and trend change in the daily average sentiment of

individuals.
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Fig. 3 Additive decomposition of time series of average sentiment
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St ¼ 0:413 � 0:005 � timet þ 0:023 � disastert þ 0:006 � time after disastert ð10Þ

The parameter estimate from the linear segmented regression model of effects of

earthquake on the mean value of the radius of gyration of individuals can be found in

Table 4. The fitted regression models are expressed in Eq. 11. The results indicate that just

before the study period, the daily average radius of gyration in the study period was

3920.155 m. Before the earthquake, there was a significant day-to-day decreasing trend in

the value (p value for baseline trend = 0.0351). After the earthquake, the fitting results

show that the day-to-day change in sentiment increases by 17.363 statistically and the level

decreases by 110.076, but not significantly for both parameters. We eliminated the non-

significant term and the most parsimonious model includes only the intercept and the

baseline trend.

Mt ¼ 3920:155 � 19:549 � timet � 110:076 � disastert þ 17:363 � time after disastert

ð11Þ
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Fig. 4 Additive decomposition of time series of average radius of gyration (mobility)
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4.3.4 Cross-correlation

We further computed the first order difference of Mt(Eq. 12) and St (Eq. 13), DMt and DSt,
which also denote the daily change in radius of gyration and sentiment. Both DMt and DSt
are stationary after ADF test with p value\ 0.01.

DMt ¼ Mt �Mt�1 ð12Þ

DSt ¼ St � St�1 ð13Þ

To explore the relationship between DMt and DSt over the time, we employed cross-

correlation analysis to examine the relationship between the two time series. Cross-cor-

relogram for DMt and DSt can be found in Fig. 5.

Table 3 Segmented regression model for interrupted time series of sentiment

Coefficient Standard error t-statistic p value

a. Full segmented regression model

Intercept b0 0.413039 0.013548 30.488 \ 2e-16***

Baseline trend b1 - 0.004743 0.001079 - 4.396 6.65e-05***

Level change after EQ b2 0.022834 0.017154 1.331 0.19

Trend change after EQ b3 0.006028 0.001286 4.686 2.60e-05***

Adjusted R-squared: 0.2958; p value: 0.0002885

b. Most parsimonious segmented regression model

Intercept 0.4064146 0.0127058 31.987 \ 2e-16***

Baseline trend - 0.0038399 0.0008458 - 4.540 4.04e-05***

Trend change after EQ 0.0056762 0.0012695 4.471 5.06e-05***

Adjusted R-squared: 0.284; p value: 0.0001728

*p value\ 0.05, **p value\ 0.01, ***p value\ 0.001

Table 4 Segmented regression model for interrupted time series of mobility

Coefficient Standard error t-statistic p value

a. Full segmented regression model

Intercept b0 3920.155 112.962 34.703 \ 2e-16***

Baseline trend b1 - 19.549 8.996 - 2.173 0.0351*

Level change after EQ b2 - 110.076 143.032 - 0.770 0.4456

Trend change after EQ b3 17.363 10.726 1.619 0.1125

Adjusted R-squared: 0.3311, p value: 9.459e-05

b. Most parsimonious segmented regression model

Intercept 3813.927 73.871 51.63 \ 2e-16***

Baseline trend - 12.061 2.572 - 4.69 2.38e-05***

Adjusted R-squared: 0.3043, p value: 2.383e-05

*p value\ 0.05, **p value\ 0.01, ***p value\ 0.001
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Based on the cross-correlation analysis, the most dominant correlation is -0.554, when

lag (h) is - 1 or 1. The negative value of lag indicates that DSt leads DMt, and DSt is a

predictor of DMt, while a positive value of lag means that changed DSt lags DMt, and DMt

can be a predictor of DSt. Therefore, we conclude that daily changed sentiment can either

lead or lag daily changed mobility.

5 Discussion

Massive amounts of geocoded data on human–environment interactions have increased the

potential for researchers to quantitatively assess dynamic processes over disaster-affected

areas. Specifically, geo-referenced tweets allowed us to examine large-scale sentiment and

human mobility patterns over the course of a severe earthquake and form ‘‘bottom-up’’

perspectives to understand urban population dynamics during an extreme event perturba-

tion. Our study examined these dynamics before, during and after the earthquake by

analyzing the spatial and temporal characteristics, and the relationship between sentiment

and mobility. The proposed framework couples collective sentiment and mobility to

evaluate the diversity of human–environment interactions and to inform efforts to improve

disaster resilience.

Prior research demonstrates some spatial characteristics of sentiment correlate with

nominal types of sentiment, and this is used to characterize locations (Bertrand et al. 2013;

Lin 2014). Although one study (Neppalli et al. 2017) has evaluated the clustering pattern of

positive and negative sentiment during Hurricane Sandy, the spatial patterns of sentiment

has not been explored fully in the disaster context in terms of disaster intensity/magnitude

and its spatial scale, nor considered other types of natural disaster. Also, the spatial

characteristics of sentiment level in a numerical form have yet been examined. Our linear

regression analysis of sentiment and earthquake intensity quantitatively reveals the neg-

ative correlation between disaster emotion and severity: the higher the earthquake intensity

is, the lower the level of the collective sentiment. Different statistics of individuals’ daily

sentiment have different correlations with intensity level, of which, the average values of

mean and sum of individuals’ sentiment during the 24 h after earthquake show high

correlation with the earthquake intensity. These statistically significant results provide

support to accept Hypothesis 1a. With more available earthquake datasets that include both

geographical locations and semantic contents, in future research, we will strive to find the
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best fitting model to explore the relationship between sentiment level and earthquake

intensity level, i.e., comparing results from the linear model and nonlinear models, in order

to achieve more general conclusions.

In addition, by employing Geary’s C and Moran’s I, we found evidence that sentiments

of similar levels tend to cluster in geographical space, though the spatial autocorrelation is

weak, and this spatial association has been found across disaster-affected areas of distinct

intensities (Hypothesis 1b). These findings extend the former studies that classified sen-

timent in earthquakes (Vo and Collier 2013) by including the spatial factor, e.g., the scale

of earthquake intensity and the clustering pattern.

Furthermore, employing the interrupted time series model, we descriptively demon-

strate the temporal dynamics of human mobility and sentiment with the interruption of the

earthquake. Results of statistical tests for the parameters in the model reveal that the

earthquake interrupted the time series of sentiment significantly by changing the trend of

the time series, while both level and trend of time series of mobility have not been

perturbed significantly by the earthquake. As both fitted models for sentiment and mobility

are statistically significant, we found evidence to support Hypothesis 2a regarding the

interruption of the earthquake, although with deviations for level and trend changes for

sentiment and mobility.

We further investigated the relationship between sentiment and mobility over time

(Hypothesis 2b) and found that the time series are cointegrated, which indicates their co-

evolution over time. Moreover, we expected that Dsentiment and Dmobility were cross-

correlated over time, and Dsentiment was a predictor of Dmobility (Hypothesis 2c). Our

analysis results found support for the hypothesis that Dsentiment can lead the change of

Dmobility; however, we also found that Dsentiment can lag the change of Dmobility. This

first effort to examine disaster dynamics over time by coupling sentiment and mobility

contributes a new, expanded and quantitative understanding of these dynamics. These

findings also extend former studies (Frank et al. 2013) regarding the relationship between

mobility pattern and sentiment to the disaster context.

However, there exist some limitations in this study in terms of data characteristics,

geographical scales, and sentiment methods. We exclusively analyzed English tweets due

to the unequal development of methods for analyzing sentiment in other languages and the

dominant role of English language in studied area. The research results should be gener-

alized to the diverse-language-speaking population with caution because the demographic

structure of users posting the English tweets is unknown. Fortunately, as the English tweets

occupy nearly 90% of collected geo-referenced daily tweets in our sample, the results are

able, by and large, to reveal the urban population dynamics in the disaster-affected area.

Our studied area is the spatial bounding box of a 2.5 intensity line and includes uneven

distribution of urban areas in different intensity polygons. Diverse geographical scales of

earthquakes and other natural disasters may lead to dissimilar effects on sentiment levels

and human mobility patterns. We plan to address these differences among multiple types of

disasters and disasters of distinct geographical scales in future studies to achieve a more

nuanced understanding of the spatiotemporal dynamics of resilience. As this paper focuses

more on the collective influence of a disaster at a large scale, our analysis is adequate in

terms of examining the proposed hypotheses.

Additionally, with the development of methods for sentiment analysis in specific

domains, especially in the context of natural disasters and extreme events, further studies

can reveal more practical information in terms of contents and sentiment levels for targeted

disaster topics. We collectively analyzed the sentiment of geotagged tweets in a disaster-

affected area to achieve a broad understanding of the influence of an earthquake in
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different intensity zones. Our next efforts will also focus on developing disaster-specific

lexicon generated from social media to classify tweets to more specific emotion types

based on disaster psychology.

6 Conclusion

This study expands our understanding of disaster resilience and urban dynamics with

crowd-sourced data from a social media platform. It examined hypotheses of spatial

characteristics of sentiment before, during and after a severe earthquake. The results

uncovered a significant negative correlation between sentiment levels and earthquake

intensity levels and demonstrated that sentiment tends to cluster in space in distinct

earthquake intensity zones. Moreover, the study investigated the temporal relationship of

sentiment and human mobility, including the dynamic effects of the earthquake over time.

The time series of radius of gyration and sentiment exhibited co-movement over time, and

Dsentiment can either lead or lag the change of Dmobility in the disaster context. We hope

to extend the proposed research framework on other types of disasters to generalize

findings of the relationship between disaster magnitude and sentiment levels and corre-

lation between sentiment and mobility, and to utilize the framework to evaluate the

dynamic process of disaster resilience at different spatial scales. With more specific ‘‘small

data’’, e.g., government strategies and disaster characteristics, the research findings based

on ‘‘big data’’ can provide ‘‘bottom-up’’ knowledge to facilitate disaster informatics and

management in terms of monitoring and evaluation in the built environment.
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